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The calculations leading to the differential equations of statistical kinematics inside a
solid and near the boundary between a solid and vacuum are given. The influence of the
transmission coefficient of the boundary on the concentration of the diffusing material in
solids is taken into account by introducing the length of extrapolation expressed by the
polynomial of arbitrary order depending on the needed accuracy. The obtained length of
extrapolation is influenced not only by the diffusion parameters and the boundary’s char-
acteristic feature but also by the initial distribution of concentration and by the time of
diffusion. The presence of an external force is neglected. The numerical calculation for
the planar diffusion of hydrogen in a palladium monocrystal is given as an example. The
present method may be particularly useful for diffusion in thin layers and membranes, or
when the detailed information on the distribution of diffusing material near the boundary
between a solid and vacuum is needed.

1. Introduction

The measurements of the diffusion coefficients and the different models of the
diffusion mechanism in solids are the subjects of many investigations. The diffusion
coefficient is defined by the Fick law. Unfortunately the Fick equation leads to the so
called “paradox of diffusion” and it is not valid far from the stationary state. Now we
shall present a derivation of the new diffusion equation for solids which is free from
the above mentioned paradox. It is believed that the statistical distribution functions of
the length of jumps of the diffusing particle and of the times between the consecutive
jumps describe the diffusion process in a proper way. Thus, that process depends on
the statistical distribution moments. The differential equation, which will be called the
equation of statistical kinematics in solids (SKS equation), is based on the balance of
events, namely, jumps or collisions. At the stationary state our results tend to the Fick
law. In the general case a better fit to the experimental data is available.

The properties of the surface layer of the examined medium differ from those
inside the medium due to the lattice deformations and chemical adsorbers on the
surface. In the classical approach there exists the boundary condition in the form
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of the length of extrapolation. The classical length of extrapolation depends on the
transmission coefficient 〈q〉 of the boundary and on the mean length of jump 〈λ〉. That
length of extrapolation does not depend on the diffusion coefficient and can be only
applied for the steady state. We shall present another boundary condition using the
classical concept of the length of extrapolation. Our event depends not only on all the
parameters of diffusion but also on the initial condition and on the time of diffusion.
The obtained boundary condition is applicable far from the steady state.

By comparison of the solution of our equation with the experimental data one can
verify the diffusion models and, consequently, predict the values of the concentration
of the diffusing substance more precisely than in the case of the classical approach.

2. Equation of statistical kinematics for solids

In the former paper [13] we have presented a solution of the SKS equation.
The SKS equation itself was obtained in [12]. Here we give a more comprehensive
derivation which gives more insight into the basic idea of that formulation of the
diffusion process.

We take into consideration the motion of the projection of the diffusing particle
on the x axis. The trajectory of that projection may have different shapes as shown in
figure 1. The circles in figure 1 mark there the characteristic points of the trajectory,
namely the points of jumps in a solid or the points of collisions (local maxima of
curvature) in a gas and plasma. The characteristic points form the ensemble of events
which will be used in our subsequent considerations.

We denote the length of distance x between two consecutive characteristic points
by λ and the corresponding interval of time t by ∆t. For liquids ∆t is the sum of the
time T during which the migrating particle is at rest in the position of equilibrium
between two consecutive jumps and of the time τ of flight to the next position of
equilibrium

∆t = T + τ. (1)

For solids we may assume

∆t = T. (2)

The ∆t and λ are the random variables. Next we assume that the sense of the x axis
agrees with that of the more probable direction of motion. We introduce an additional
random quantity σ characterized by the following statistical distribution

f1(σ) = K−δ(σ + 1) +
[
1− (K− +K+)

]
δ(σ) +K+δ(σ − 1), (3)

where δ(σ) is Dirac’s delta function, K+ is the probability that the diffusing parti-
cle moves in the positive direction along the x axis while jumping and K− is the
probability that it jumps in the negative one. We have

〈σ2r〉 = K+ +K−, 〈σ2r−1〉 = K+ −K−, (4)
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(a) (b)

(c)

Figure 1. The different shapes of the trajectory of the projection of the diffusing particle on the x axis:
(a) in an ideal gas, (b) in a real gas or plasma, (c) in a liquid. The circles mark the characteristic points.

where r = 1, 2, . . . , and 〈σ〉 denotes the expectation value of σ. The random variable
σ expresses the fact that the projection of the diffusing particle on the x axis can move
in either the positive or negative direction or it can rest while the diffusing particle is
moving in the plane normal to the x axis. The last possibility is not realized when
K+ +K− = 1. Then we denote

∆x = σλ. (5)

Now we can draw the set of the surface elements Smn in the kinematic plane t,x
(figure 2), where

Smn = (tm+1 − tm)(xn+1 − xn), tm = m∆t+ c1, xn = n∆x+ c2, (6)

m,n are integers and c1, c2 are arbitrary constants. These surface elements are the
random variables. For the given ∆t and ∆x each characteristic point (connected with
the values of ∆t and λ) which lies in the rectangle Sm+1

n has its predecessor in one of
the rectangles Smn−1, Smn and Smn+1. Therefore we can balance the events. We shall call
the area of the four elements Sm+1

n , Smn−1, Smn and Smn+1 the conservation of events
or the balance area. Now we have two systems of co-ordinates: the discontinuous
co-ordinates m,n and the continuous co-ordinates t,x. Moreover, the n axis can
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Figure 2. The area of the balance of events for σ = 1.

be parallel, antiparallel or perpendicular to the x axis due to the random variable σ.
We see, that only four points (m + 1,n), (m,n − 1), (m,n) and (m,n + 1) are
necessary to form the balance area in the co-ordinates m,n. In the co-ordinates t,x
each point (m,n) is represented by the element Smn which is a random quantity. For
the continuous statistical distribution of ∆t and λ the whole balance area is filled
by the characteristic points (figure 2), which form a continuous ensemble. For the
discrete statistical distribution of ∆t and λ the balance area is covered by a discrete
ensemble of events (figure 3). When ∆t is a constant, the balance area reduces itself
to two segments parallel to the x axis (figure 4). When λ has a constant value, the
balance area reduces itself to three segments parallel to the t axis (figure 5). Only
for constant values of ∆t and λ, when the variability of these quantities is neglected,
each point (m,n) is explicitly represented by one point (t,x), because the other points
of the element Smn are free from the events; Smn is empty except one point. For this
case the balance area consists of four points: (tm,xn−1), (tm,xn), (tm,xn+1) and
(tm+1,xn) (figure 6) in the co-ordinates t,x. We see that each of the cases considered
above is connected with different geometric structure of the balance area. We think
that this structure brings the information on the fundamental features of the diffusion
phenomenon and should be reflected in the form of the differential equation describing
the process here considered.

Let C(t,x, ∆t,λ) dt dx d(∆t) dλ be the average number of events inside the in-
tervals (t, t + dt) and (x,x + dx). These events lie at the distances included in the
intervals (∆t, ∆t+ d(∆t)) along the t axis and (λ,λ+ dλ) along the x axis from their
predecessors. The average value of the function C(t,x, ∆t,λ) in the element Smn for
the given realization of σ, ∆t and λ is as follows:

1
∆t∆x

∫ tm+1

tm

∫ xn+1

xn

C(t,x, ∆t,λ) dx dt.
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Figure 3. The possible positions of the characteristic points in the balance area for the discrete statistical
distributions of ∆t and λ and for σ = 1. Here j = 3 and l = 4.

Figure 4. The possible positions of the characteristic points in the balance area for constant ∆t and for
σ = 1. The statistical distribution of λ is discrete. Here j = 1 and l = 4.

We assume, that the above expression remains finite when σ = 0. The value of the
concentration of events that we can ascribe to the point (m,n) is

Cmn =

∫
λ

∫
∆t

∫
σ

[
1

∆t∆x

×
∫ tm+1

tm

∫ xn+1

xn

C(t,x, ∆t,λ) dx dt

]
f1(σ) dσ d(∆t) dλ. (7)

Now we can write the equation of the conservation of events:

Cm+1
n = K+C

m
n−1 +

[
1− (K− +K+)

]
Cmn +K−C

m
n+1. (8)
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Figure 5. The possible positions of the characteristic points in the balance area for constant λ and for
σ = 1. The statistical distribution of ∆t is discrete. Here j = 3 and l = 1.

Figure 6. The possible positions of the characteristic points in the balance area for constant ∆t and λ
and for σ = 1. Here j = 1 and l = 1.

Only these particles which collide or jump in one of the elements Smn−1, Smn or Smn+1
can have the next collision (or jump) in the element Sm+1

n . This is the essential sense
of equation (8). The form of equation (8) is like a form of master equation in the
co-ordinates m,n. When K− = K+ = K equation (8) can be written as follows:

Cm+1
n − Cmn

∆t
= K

∆x2

∆t
(Cmn+1 − Cmn )− (Cmn − Cmn−1)

∆x2 . (9)

Let ∆t → 0 and ∆x → 0 while K(∆x2/∆t) = D remains constant. The above
condition means that: (1) the variabilities of the quantities ∆t and λ are neglected,
(2) the balance area reduces itself to its edge point. We see that in this case the Fick



A. Sobaszek, L. Adamowicz / Transmission coefficient of the boundary 419

equation can be obtained from equation (9) in a direct way. Therefore, we think that
the differential SKS equation will turn into the Fick equation for constant ∆t and λ
when the concentration of the diffusing substance and its derivatives will be taken in
the edge point of the balance area and without the external force (〈σ〉 = 0).

Now we assume that

C(t,x, ∆t,λ) = C(t,x)f (∆t,λ) (10)

and

f (∆t,λ) = f2(∆t)f3(λ). (11)

It means that: (1) the statistical distribution of ∆t and λ does not depend on t and
x, (2) the function of the statistical distribution of the random variables ∆t and λ can
be written in the multiplicative form. The first of these requirements may be fulfilled
when there is no transport process except self-diffusion in the examined medium. Con-
sequently, the differential equation has constant coefficients. Our second requirement
means that the random variables ∆t and λ are statistically independent. The additional
limitation of the proposed model of diffusion is connected with the assumption that the
random variables ∆t and λ are statistically independent of the sense of motion along
the x axis (see formula (7)).

We can only say that due to these assumptions the Fick equation can be obtained
from the SKS equation when all terms of equation (8) are expressed by the function
C(t,x) and its derivatives taken in the edge point of the balance area. As that equation
agrees with the majority of the experimental data, we may think that our second
requirement is fulfilled.

The quantity C(t,x) dx gives the average number of events (jumps or collisions)
inside the interval (x,x+ dx) at the moment t. We assume, that C(t,x) dx is propor-
tional to the amount of the diffusing substance in that interval. Hence, we can interpret
C(t,x) as the concentration of the diffusing material. Then we can write

Cmn = 〈Wm
n 〉, (12)

where

〈Wm
n 〉 =

∫
λ

∫
∆t

∫
σ
Wm
n f1(σ)f2(∆t)f3(λ) dσ d(∆t) dλ (13)

and

Wm
n =

1
∆t∆x

∫ tm+1

tm

∫ xn+1

xn

C(t,x) dt dx, (14)

or

Wm
n =

1
∆t∆x

∫ ∆t

0

∫ ∆x

0
C(tm + u,xn + v) du dv.
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The form of the trajectory of the diffusing particle in a solid (∆t = T ) should be
properly reflected in the operator relating C(tm + u,xn + v) and C(tm,xn). The step
of u is represented by the action of the operator

∞∑
a=0

ua

a!
∂a

∂ta

when applied to the function C(tm,xn). Similarly, we represent the step of v by

∞∑
b=0

vb

b!
∂b

∂xb
.

Thus,

C(tm + u,xn + v) =
∞∑

a,b=0

uavb

a!b!
C(tm,xn)taxb , (15)

where we use the notation

∂a+b

∂ta ∂xb
f (t,x) = f (t,x)taxb . (16)

Introducing equation (15) into equation (14) we obtain

Wm
n =

∞∑
a,b=0

∆ta∆tb

(a+ 1)!(b + 1)!
C(tm,xn)taxb . (17)

Starting from here we will use throughout this paper the following approximation:

Wm
n = C(tm,xn) +

∆t
2
C(tm,xn)t +

∆x
2
C(tm,xn)x +

∆t∆x
4

C(tm,xn)tx. (18)

The presence of the mixed derivative C(tm,xn)tx reflects the fact that in our scheme the
diffusing particle is allowed to pass from the point (tm,xn) to the point (tm+1,xn+1)
only through the points (tm+1,xn) or (tm,xn+1).

For solids we assume that the statistical distributions of ∆t and λ are discrete,
i.e.,

∆t = jT0 (19)

and

λ = lλ0, (20)

where λ0 is the constant length of the elementary jump, T0 is the constant period of
oscillations of the diffusing particle in its equilibrium position and j, l are integers
being the random variables. When f2(j) = δ(j − 1) we put 〈∆t〉 instead of T0; when
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f3(l) = δ(l − 1) we replace λ0 by 〈λ〉. Now for solids Wm
n takes the following form

in the first approximation:

Wm
n =C(tm,xn) +

1
2

(j − 1)T0C(tm,xn)t +
1
2
σ(l − 1)λ0C(tm,xn)x

+
1
4
σ(j − 1)(l − 1)T0λ0C(tm,xn)tx. (21)

In the earlier paper [12] dealing with diffusion in solids we have recently detected
some minor numerical errors in numbers representing the factors in Wm

n , therefore the
coefficients of the differential equations (but not the equations themselves) have to be
slightly corrected. These errors have no influence on the general conclusions in [13].

Now we need to express all the terms of equation (8) by the derivatives of the
function C(t,x) taken at the edge point of the balance area. We should introduce the
information about the geometric proportions of the balance area to the calculation.
So we go to the edge point step by step, each step is connected with the separate
expansion of C(t,x) in the Taylor series

C(tm,xn) =
∞∑
a=0

∆xa

a!
C(tm,xn−1)xa , (22)

C(tm,xn+1) =
∞∑

a,b=0

∆xa+b

a!b!
C(tm,xn−1)xa+b , (23)

C(tm+1,xn) =
∞∑

a,b=0

∆ta∆xb

a!b!
C(tm,xn−1)taxb . (24)

Introducing the above expressions together with (4), (5), (12), (13) and (17) into
equation (8) we obtain the general differential equation. That equation contains the
derivatives of the function C(t,x) taken in the edge point of the balance area. Its form
depends on the assumed forms of the statistical distribution functions f1(σ), f2(∆t)
and f3(λ). Limiting the play of the series indices to two values 0 and 1, we obtain the
following differential equation as the first approximation of the general equation:

Ct +A′Ct2 +B′1Cx +B′2Ctx −B′3Cx3 +B′4Ct2x −B′5Ctx3 −D′1Cx2

+D′2Ctx2 +D′3Ct2x2 = 0, (25)

where

A′=
(
〈j2〉 − 〈j〉

) T0

2〈j〉 ,

B′1 =
〈σ〉2〈l〉λ0

〈j〉T0
,

B′2 =
1
2
〈σ〉
(

3〈l〉 − 1 + 〈σ〉〈l〉〈j〉 − 1
〈j〉

)
λ0,
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B′3 =
1
4
〈σ〉
(
〈σ2〉 − 〈σ〉

)(
〈l3〉 − 〈l2〉

) λ3
0

〈j〉T0
,

B′4 =
1
4
〈σ〉〈j

2〉 − 〈j〉
〈j〉

(
3〈l〉 − 1

)
T0λ0,

B′5 =
1
8
〈σ〉
(
〈σ2〉 − 〈σ〉

) 〈j〉 − 1
〈j〉

(
〈l3〉 − 〈l2〉

)
λ3

0,

D′1 =
1
2
〈σ2〉

[
〈σ2〉〈l2〉 − 〈σ〉

(
2〈l2〉 − 〈l〉

)] λ2
0

〈j〉T0
,

D′2 =
1
4
〈σ2〉

{
2
(
〈l2〉 − 〈l〉

)
− 〈j〉 − 1
〈j〉

[
〈σ2〉〈l2〉 − 〈σ〉

(
2〈l2〉 − 〈l〉

)]}
λ2

0,

D′3 =
1
4
〈σ2〉〈j

2〉 − 〈j〉
〈j〉

(
〈l2〉 − 〈l〉

)
T0λ

2
0.

We see that the obtained above SKS equation contains the second order derivative
with respect to time and the third order derivative with respect to distance. It agrees
with the geometric proportions of the balance area which lasts 2∆t and has the length
3∆x (see figure 3).

Let f2(j) = δ(j − 1) and 〈σ〉 = 0 (see figure 4). Now equation (25) takes the
form

Ct −D′1Cx2 +D′2Ctx2 = 0. (26)

The above equation was obtained by Cantello [1] and then by Mrygon and Wojtczak [8]
from master equation.

Assuming the concentration in the form of Fourier series

C(t,x) =

∞∑
p=0

A(p) exp
[
−α(p)t

]
exp(ipx), (27)

one obtains from Cantello equation the relaxation coefficient α(p) as follows:

α(p) =
p2D′1

1− p2D′2
. (28)

According to the Cantello equation if p2D′2 > 1 then the amplitudes of concentration
harmonics increase infinitely with time while the external forces are absent (〈σ〉 =
0). Such effect contradicts the energy conservation principle and it is not observed.
Therefore the Cantello equation leads to a very substantial paradox.

When f2(j) = δ(j−1), f3(l) = δ(l−1) and 〈σ〉 = 0 we obtain the Fick equation
(see figure 6)

Ct −D′1Cx2 = 0 (29)

with its known paradox

α(p) = p2D′1 (30)
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and limp→∞ α(p) = ∞. The above result agrees with equation (9). We see that the
orthodox equations with their failures can be obtained from equation (8) in the edge
point of the area of the conservation of events. Moreover, it is possible only under
condition that the balance area has the length of one step ∆t along time axis, i.e.,
f2(j) = δ(j − 1). When ∆t varies randomly, the balance area has the length of two
steps ∆t along time axis and the derivative of the second order with respect to time
must appear in the differential equation. Also in the coefficients of the differential
equation must appear the first and the second moments of the statistical distribution
function f2(j) (see 〈j〉 and 〈j2〉 in equation (25)). We cannot agree with the orthodox
approach based on the form of master equation which contains only the first derivative
with respect to time [7,9]. Such form can be justified only when one neglects the
random variability of ∆t, i.e., for long time of diffusion, when the expansion into a
Fourier series contains no more than a few harmonics.

Let us look once more on equation (25) for 〈σ〉 > 0. Let f2(j) = δ(j − 1) and
f3(l) = δ(l− 1). One may suppose that in this case equation (25) should turn into the
classical Einstein–Fokker–Planck (EFP) equation. Actually we obtain, instead of the
EFP equation, another equation,

Ct +B′1Cx −D′1Cx2 +B′2Ctx = 0 (31)

with the phase velocity of the waves of concentration

β(p) =
B′1 − p2B′2D

′
1

1 + p2B′22
, (32)

while the EFP equation does not contain the mixed derivative and it gives the phase
velocity β independent of p. We can interpret this discrepancy in the following way.
The EFP equation describes the drift with constant velocity of the crystal lattice together
with the diffusing particles. In our model only the diffusing particles feel the action of
an external force and the crystal lattice remains at rest with respect to the observer. The
waves of concentration may interact with the lattice depending on the wave number p.
In this paper we shall deal with the case 〈σ〉 = 0.

More interesting results can be achieved at the centre point of the balance area.
We pass from the edge point (tm,xn−1) to the centre point (tm,xn) by one step of
−∆x:

C(tm,xn−1) =
∞∑
a=0

(−∆x)a

a!
C(tm,xn)xa . (33)

We obtain the following differential equation in the first approximation:

Ct +ACt2 +B1Cx +B2Ctx +B3Cx3 +B4Ct2x −B5Ctx3 −B6Ct2x3

−D1Cx2 −D2Ctx2 −D3Ct2x2 +D4Cx4 +D5Ctx4 = 0, (34)
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where

A=
(
〈j2〉 − 〈j〉

) T0

2〈j〉 ,

B1 =
〈σ〉2〈l〉λ0

〈j〉T0
,

B2 =
1
2
〈σ〉
(
〈l〉 − 1 + 〈σ〉〈l〉〈j〉 − 1

〈j〉

)
λ0,

B3 =
1
4
〈σ〉
[
〈σ2〉

(
〈l3〉+ 〈l2〉

)
− 〈σ〉

(
3〈l3〉 − 〈l2〉

)] λ3
0

〈j〉T0
,

B4 =
1
4
〈σ〉〈j

2〉 − 〈j〉
〈j〉

(
〈l〉 − 1

)
T0λ0,

B5 =
1
4
〈σ〉
{

2
(
〈l3〉 − 〈l2〉

)
− 1

2
〈j〉 − 1
〈j〉

[
〈σ2〉

(
〈l3〉+ 〈l2〉

)
− 〈σ〉

(
3〈l3〉 − 〈l2〉

)]}
λ3

0,

B6 =
1
4
〈σ〉
(
〈l3〉 − 〈l2〉

)〈j2〉 − 〈j〉
〈j〉 T0λ

3
0,

D1 =
1
2
〈σ2〉

(
〈σ2〉〈l2〉+ 〈σ〉〈l〉

) λ2
0

〈j〉T0
,

D2 =
1
2
〈σ2〉

[
2〈l2〉+ 〈j〉 − 1

2〈j〉
(
〈σ2〉〈l2〉+ 〈σ〉〈l〉

)]
λ2

0,

D3 =
1
2
〈σ2〉〈l2〉〈j

2〉 − 〈j〉
〈j〉 T0λ

2
0,

D4 =
1
4
〈σ2〉

(
〈σ2〉 − 〈σ〉

)(
〈l4〉 − 〈l3〉

) λ4
0

〈j〉T0
,

D5 =
1
8
〈σ2〉

(
〈σ2〉 − 〈σ〉

)(
〈j〉 − 1

)(
〈l4〉 − 〈l3〉

) λ4
0

〈j〉 .

The above SKS equation plays here a similar role as the EFP equation plays for the
orthodox approach. It is evident that the passage from the edge point (tm,xn−1) to
the centre point (tm,xn) generates the derivative of the fourth order with respect to
distance. Thus we see, that the order of the differential equation depends on the point
of tangency of the solution of that equation to the solution of equation (8).

When 〈σ〉 = 0, equation (34) takes the form

Ct +ACt2 −D1Cx2 −D2Ctx2 −D3Ct2x2 +D4Cx4 +D5Ctx4 = 0 (35)

and the corresponding relaxation coefficient is

α(p) =
1 + p2D2 + p4D5 − (∆)1/2

2(A+ p2D3)
, (36)
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where

∆ = 1 + 2p2(D2 − 2AD1) + p4(D2
2 + 2D5 − 4AD4 − 4D1D3

)
+ 2p6(D2D5 − 2D3D4) + p8D2

5. (37)

It can be seen that

lim
p→∞

α(p) =
D2

2D3
, (38)

so equation (35) is free from the paradox of diffusion.
When f2(j) = δ(j − 1) (see figure 4), equation (35) gives

Ct −D1Cx2 −D2Ctx2 +D4Cx4 = 0. (39)

The above equation corresponds to the Cantello equation and is free from its paradox:

α(p) =
p2D1 + p4D4

1 + p2D2
. (40)

We see that α(p) > 0 for all p. We have limp→∞ α(p) = ∞ but here it does not
contradict to the assumed conditions, because now ∆t is constant and λmay be arbitrary
long.

For the case shown in figure 6, equation (35) turns into

Ct −D1Cx2 −D2Ctx2 = 0. (41)

The relaxation coefficient obtained from the above equation is as follows:

α(p) =
p2D1

1 + p2D2
(42)

and

lim
p→∞

α(p) =
D1

D2
. (43)

Equation (41) corresponds to the Fick equation and is free from the diffusion paradox
(for constant ∆t and constant λ the relaxation coefficient α should be limited for all p).
The coefficients D1 and D2 in equation (41) contain 〈σ2〉, λ2

0 and 〈∆t〉. Interpreting the
experimental data according to equation (41) one can determine two from three those
quantities. Our approach allows one to obtain more information from the experiment
than the orthodox approach does.

3. Boundary conditions

The simplest boundary condition used for transparent barrier (i.e., barrier char-
acterized by the transmission coefficient equal to one) when the concentration of the
diffusing atoms outside the sample equals zero is the condition of Dirichlet,

C(t, 0) = C(t,L) = 0, (44)
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where L is the length of the specimen.
In the case of diffusion in gases or when neutrons diffuse in solids (i.e., when the

mean free path of the diffusing particles is not considered as an infinitesimal quantity)
another boundary condition for transparent barriers is used. It has the form

C(t,−d) = C(t,L+ d) = 0, (45)

where d is the length of extrapolation.
Smoluchowski [10] calculated the value of the length of extrapolation dc =

0.707〈λ〉, where 〈λ〉 is the length of the mean free path of the diffusing particles. He
dealt with the distribution of temperature near the boundary between gas and solid
but his result can be applied to diffusion. In the contemporary monograph [4] the
length of linear extrapolation is applied to the diffusion of neutrons and it is quoted as
dc = 0.7〈λ〉. When one wants to take into account the fact that the barrier may have
different degrees of transparency one should use the following form of the length of
linear extrapolation [3]

dc = 0.71
(
2− 〈q〉

)
〈λ〉/〈q〉, (46)

where q is the random variable equal to 1 (when the diffusing particle penetrates
through the barrier) or 0 (when the diffusing particle rebounds from the barrier). Thus
〈q〉 is the expectation value of q and has a meaning of the coefficient of transmis-
sion. For 〈q〉 = 0 the boundary condition (46) leads to the condition of Neumann
(∇C(t, 0) = ∇C(t,L) = 0). The classical length of extrapolation can be applied only
to steady state. It does not depend on the initial distribution of concentration and on
the time of diffusion. The features of the medium are characterized only by 〈λ〉 and
〈q〉; the coefficient of diffusion does not enter equation (46).

The boundary condition in the form of the length of extrapolation is still used –
see equation (2.6.1) in [5], where dc is written as follows:

dc =
1 +R

1−R
2
3
〈λ〉. (47)

Here R = 1−〈q〉 is the effective reflection coefficient. For R = 0 we obtain the result
of Smoluchowski with accuracy to the numerical factor.

A similar boundary condition was given by Crank [2] and now by the authors
of [6], where in the point x = 0 it has the form

dC
dx
−KC = 0. (48)

Here K may be considered as the reciprocal of the length of extrapolation. Two cases
are considered in [6]: (1) K = 0 for the Neumann boundary condition (〈q〉 = 0), and
(2) K = ∞ for the Dirichlet condition. The last case means that the authors of [6]
assume dc = 0 for 〈q〉 = 1. This assumption cannot be thought as an exact one from
the times of Smoluchowski.

The above mentioned results were obtained within the orthodox approach.
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The balance of events near the boundary between solid and vacuum was consid-
ered in [11]. Unfortunately, the results obtained in [11] are not correct because of the
error in [12] mentioned earlier.

If the barrier between solid and vacuum lies at the point xn+1 then the element
Smn+1 is absent in the balance area because it lies outside the examined medium. Thus
the probability that a particle which jumps (with the given values of j and l) inside
element Smn will not have the next jump inside element Sm+1

n is 〈q〉K+ +K−, so the
balance of events leads to the following equation:

Cm+1
n = K+C

m
n−1 +

[
1−

(
〈q〉K+ +K−

)]
Cmn . (49)

Under the same conditions as formerly one can obtain the differential equation from
equation (49) in the point (tm,xn−1) as follows:

Ct +A∗,Ct2 +B∗,1 Cx +B∗,2 Ctx +B∗,3 Ct2x
+D∗,1 Cx2 +D∗,2 Ctx2 +D∗,3 Ct2x2 +E∗C = 0, (50)

where

A∗, =
(
〈j2〉 − 〈j〉

)T0

2γ
,

B∗,1 = 〈σ〉
{
〈σ2〉

[
2〈l〉+ 〈q〉

(
3〈l〉 − 1

)]
− 〈σ〉

[
2
(
2〈l〉 − 1

)
− 〈q〉

(
3〈l〉 − 1

)]} λ0

4γT0
,

B∗,2 = 〈σ〉
{

2〈j〉
(
3〈l〉 − 1

)
+ (1/2)

(
〈j〉 − 1

)[
〈σ2〉

[
2〈l〉+ 〈q〉

(
3〈l〉 − 1

)]
− 〈σ〉

[
2
(
2〈l〉 − 1

)
− 〈q〉

(
3〈l〉 − 1

)]]}λ0

4γ
,

B∗,3 = 〈σ〉
(
〈j2〉 − 〈j〉

)(
3〈l〉 − 1

)T0λ0

4γ
,

D∗,1 = 〈σ2〉
[
〈σ2〉

(
1 + 〈q〉

)
− 〈σ〉

(
1− 〈q〉

)](
〈l2〉 − 〈l〉

) λ2
0

4γT0
,

D∗,2 = 〈σ2〉
{

2〈j〉 + 1
2

(
〈j〉 − 1

)[
〈σ2〉

(
1 + 〈q〉

)
− 〈σ〉

(
1− 〈q〉

)]}(
〈l2〉 − 〈l〉

)λ2
0

4γ
,

D∗,3 = 〈σ2〉
(
〈j2〉 − 〈j〉

)(
〈l2〉 − 〈l〉

)λ2
0T0

4γ
,

E∗ =
[
〈σ2〉〈q〉 − 〈σ〉

(
2− 〈q〉

)] 1
2γT0

,

γ = 〈j〉+ 1
4

(
〈j〉 − 1

)[
〈σ2〉〈q〉 − 〈σ〉

(
2− 〈q〉

)]
.
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Equation (50) is the differential equation of statistical kinematics near the bound-
ary between solid and vacuum (SKSB equation) taken at the edge point of the balance
area (the point (tm,xn−1)). Now the presence of the barrier in the point xn+1 breaks
the symmetry of the balance area and the consideration of the differential terms at the
point xn is not applicable.

4. Length of extrapolation

Farther on we shall use equation (34) because it is free from the paradox of
diffusion. Equation (50) plays the role of the boundary condition for equation (34).
Since the distance between the point xn and the boundary equals lλ0 we shall consider
equations (34) and (50) in the point xb = L− 〈l〉λ0. We assume that K+ = K− and
〈σ〉 = 0, i.e., both directions of jumping along the x axis have the same probability
(an external force is absent).

Equation (50) gives

C(t,xb) = − 1
E∗
(
Ct +A∗,Ct2 +D∗,1 Cx2 +D∗,2 Ctx2 +D∗,3 Ct2x2

)
. (51)

We know the solution of the SKS equation under the boundary condition (44) (in [13])
and we can find the values of Ct, Ct2 , Cx2 , Ctx2 and Ct2x2 in the point xb – thus
the value of C(t,xb) is attainable from equation (51). Of course this value does not
represent the actual concentration inside the sample. It is only a fictitious quantity
introduced for approximate determination of the length of extrapolation. Next we
expand the concentration into the Taylor series:

C(t,xb + δx) =
∞∑
i=0

(δx)i

i!
C(t,xb)xi . (52)

We end the summation of the series with i = imax depending on the needed
accuracy and we seek such value of δx for which C(t,xb + δx) = 0. In the simplest
case of linear extrapolation we have C(t,xb) + δxC(t,xb)x = 0 and

δx = − C(t,xb)
C(t,xb)x

. (53)

Here C(t,xb) is calculated from equation (51) and C(t,xb)x is calculated from the
solution of equation (35) under the boundary condition (44).

Now the length of linear extrapolation is found:

d(0) = δx− 〈l〉λ0. (54)

Then we obtain the new value L(1) = L+ 2d(0) and repeat the calculation till d(n+1)−
d(n) ≈ 0. At last we assume that d(n+1) is the wanted value of d. We see that
our length of extrapolation depends not only on the coefficients of diffusion and on
the transmission coefficient of the boundary but also on the initial distribution of
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concentration C(0,x) and on the time of diffusion t. The length of extrapolation should
depend on time in order to reproduce the initial distribution of concentration for t = 0.
The last dependence vanishes for long times when the expansion of concentration into
the Fourier series approximates to the first term.

5. Example of hydrogen diffusion in palladium

Let us look on diffusion of hydrogen in a palladium monocrystal. We assume
that an external force is absent and 〈σ〉 = 0. We shall use the results of our former
work [13]. Let us introduce the initial distribution of concentration:

C(0,x) = C0H(x)
[
1−H(x− L)

]
, (55)

where

H(z) =

{
1 for z > 0,
0 for z < 0,

is the Heaviside function, L is the length of sample and C0 is the initial concentration
of hydrogen in palladium.

We assume T0 = 1, 〈j2〉 = 2〈j〉2, 〈j〉 = 1600 (what corresponds to a diffusion
temperature of about 345 K [14]), lattice constant a = 1, L = 10 and C0 = 1.

We want to obtain the length of linear extrapolation d for two directions of
hydrogen diffusion in palladium lattice and for different values of the transmission
coefficient 〈q〉. The dependence of d on the diffusion time t will be shown also.

(a) Let the x axis be parallel to the [100] direction. For this case we have 〈lr〉 = 1
for arbitrary r, λ0 = 1/2 and 〈σ2〉 = 2/3. The corresponding solution of the SKS
equation (35) with boundary condition (44) is now given by the function

C1(t,x) =
4C0

π

∞∑
k=0

1
2k + 1

exp[−α1t] sin

(
2k + 1
L

πx

)
, (56)

where

α1 =
1 + p2D2 −

√
∆1(p)

2(A+ p2D3)

is a function of k by

∆1(p) = 1 + 2p2(D2 − 2AD1) + p4(D2
2 − 4D1D3

)
,

p =
π

L
(2k + 1).

This solution differs from that given in [13] because for the revised values of the
coefficients in the SKS equation we have ∆1(p) > 0 for all values of p.

(b) Let the x axis be parallel to the [110] direction. Now we have 〈l〉 = 1.2,
〈l2〉 = 1.6, 〈l3〉 = 2.4, 〈l4〉 = 4, λ0 =

√
2/4 and 〈σ2〉 = 5/6. The corresponding
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solution of the SKS equation with boundary condition (44) is given by the function
[13]

C2(t,x) =
4C0

π

{ k′1∑
k=0

1
2k + 1

exp[−α2t] sin

(
2k + 1
L

πx

)

+

k′2∑
k=k′1+1

1
2k + 1

exp[−α3t] sin

(
2k + 1
L

πx

)
cos(ωt)

+
∞∑

k=k′2+1

1
2k + 1

exp[−α2t] sin

(
2k + 1
L

πx

)}
, (57)

where k′1 = 3, k′2 = 32 and

α2 =
1 + p2D2 + p4D5 −

√
∆2(p)

2(A+ p2D3)
,

α3 =
1 + p2D2 + p4D5

2(A+ p2D3)
,

ω=

√
∆2(p)

2(A+ p2D3)
,

∆2(p) = 1 + 2p2(D2 − 2AD1) + p4[D2
2 + 2D5 − 4(AD4 +D1D3)

]
+ 2p6(D2D5 − 2D3D4) + p8D2

5.

The values of k′1 and k′2 differ from those given in [13] because now we use the revised
values of the coefficients in the SKS equation.

The values of the length of linear extrapolation d calculated in the way presented
in the preceding chapter for the cases (a) and (b) and for different diffusion times t
and transmission coefficients 〈q〉 are given in tables 1 and 2.

One can see that for 〈q〉 = 1 the length of linear extrapolation d < 0. It means that
in this case the surface of a crystal is free from the diffusing material. For 〈q〉 → 0 the
length of linear extrapolation d tends to infinity – it agrees with the classical boundary
condition for reflecting boundary (Neumann condition) C(t, 0)x = C(t,L)x = 0.

Table 1
The values of the length of extrapolation d after n steps of iteration for the
diffusion time t = 107. The number of decimal digits reflects numerical

accuracy of the results.

[100] [110]

〈q〉 = 1 〈q〉 = 10−2 〈q〉 = 1 〈q〉 = 10−2

d −0.488359 0.24217 −0.412266 0.2773
n 3 9 3 9
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Table 2
The values of the length of extrapolation d after n steps of iteration for the
diffusion time t = 105. The series (56) and (57) were summed up to k = 50.
Further increase of k does not change the results within the range of assumed

numerical accuracy.

[100] [110]

〈q〉 = 1 〈q〉 = 10−2 〈q〉 = 1 〈q〉 = 10−2

d −0.484216 0.758471 −0.410438 0.51931
n 3 4 3 5

The application of the length of extrapolation may be illustrated as follows. For
the given value of the transmission coefficient 〈q〉 we find the length of extrapolation
d(0) and the extrapolated length of sample L(1) = L + 2d(0). This value should be
introduced to the wave number p instead of L, i.e., L(1) influences the values of the
exponential and trigonometric functions forming our solutions C1(t,x) or C2(t,x).
The term C0 remains the same as formerly. One has to control the values of k′1 and
k′2 which may be changed. As one may see the function ∆2 changes its sign for k1

and k2 – the values of k′1 and k′2 are the highest integers which are not higher than
k1 and k2, respectively. For the value L(1) we find new value d(1) and so on, until
d(n+1) − d(n) ' 0. One can see in tables 1 and 2 that the lower is 〈q〉 and the longer
is t the higher ordered approximation should be used (n grows).

We have three cases: (1) d > 0, (2) d < 0, and (3) d = 0. The last case do not
require any comment. For the second case the layers of thickness |d| adjacent to the
boundaries are free from the diffusing atoms. The illustrations of the cases (1) and
(2) are given in figures 7–10. The anisotropy of diffusion shown in these figures was
commented in [13]. Now we have D[100]

1 ' 3.47 × 10−5 and D[110]
1 ' 4.34 × 10−5.

The relative difference between concentrations given by diffusion in [100] and [110]
directions becomes smaller for shorter times when the concentrations are higher. The
influence of the boundary’s transmission coefficient 〈q〉 on the planar diffusion of
hydrogen in a palladium monocrystal was considered by us as an example of application
of our approach and the detailed discussion of the diffusion mechanism is not our
aim.

6. Conclusions

In this paper the new approach to the diffusion problem is presented in detail. We
find a particular area (called the balance area) where the principle of the conservation
of events (jumps or collisions) is fulfilled in the kinematic plane t,x. That balance
area is a random quantity. The equation of the balance of events allows one to obtain
the differential equation which governs the diffusion process. The geometric structure
of the balance area influences the form of the differential equation. That structure
depends on the statistical distributions of the lengths of jumps λ and of the time
intervals between them ∆t. Particularly, the concentration derivative of the second
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Figure 7. The dependence of the hydrogen concentration C1 on the distance x in the palladium monocrys-
tal. The x axis lies on the [100] direction. The time of diffusion t = 107 and the transmission coefficient

of the boundary 〈q〉 = 1. The additional information is given in the text of the paper.

Figure 8. The dependence of the hydrogen concentration C1 on the distance x in the palladium monocrys-
tal. The transmission coefficient of the boundary 〈q〉 = 10−2. For additional information see figure 7.

order with respect to time must appear in the differential equation when one wants to
take into account the random variability of ∆t. The classical equations of Fick and of
Cantello with their failures are obtained for constant ∆t at the edge point of the balance
area. The differential equation free from the “paradox of diffusion” (SKS equation) is
available at the centre point of the balance area. The calculations are performed for
the discrete statistical distributions of ∆t and λ which characterize a solid.

The balance of events near the boundary between a medium and vacuum leads to
another differential equation (SKSB equation) which, together with the SKS equation,
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Figure 9. The dependence of the hydrogen concentration C2 on the distance x in the palladium monocrys-
tal. The x axis lies on the [110] direction. The time of diffusion t = 107 and the transmission coefficient

of the boundary 〈q〉 = 1. The additional information is given in the text of the paper.

Figure 10. The dependence of the hydrogen concentration C2 on the distance x in the palladium monocrys-
tal. The transmission coefficient of the boundary 〈q〉 = 10−2. For more information see figure 9.

allows one to introduce the boundary condition using the concept of the length of
extrapolation. Our length of extrapolation d depends not only on 〈λ〉 and on the
transmission coefficient of the boundary 〈q〉 but also on all the parameters of diffusion
and on the time t and it can be applied far from the stationary state contrary to the
classical length of extrapolation dc.

The obtained results may be particularly useful when the length of extrapolation
cannot be treated as an infinitesimal quantity, i.e., for diffusion in thin layers and
membranes or when the transmission coefficient of the boundary is very small. Our
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approach may serve as a reference to verify different mechanisms of atoms’ migration
by further inspection into the statistical distributions of ∆t and λ. The SKS equation
together with the boundary condition in the form of the SKSB equation give a new
description of the diffusion phenomenon in solids which goes beyond the classical
approach.
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